Record Details

CIMMYT Institutional Multimedia Publications Repository

View Archive Info
 

Metadata

 
Field Value
 
Title Genome-wide association study for multiple biotic stress resistance in synthetic hexaploid wheat
 
Names Bhatta, M.R.
Morgounov, A.I.
Belamkar, V.
Wegulo, S.N.
Dababat, A.A.
Erginbas-Orakci, G.
Moustapha El Bouhssini
Gautam, P.
Poland, J.A.
Akci, N.
Demir, L.
Wanyera, R.
Baenziger, P.S.
Date Issued 2019 (iso8601)
Abstract Genetic resistance against biotic stress is a major goal in many wheat breeding programs. However, modern wheat cultivars have a limited genetic variation for disease and pest resistance and there is always a possibility of the evolution of new diseases and pests to overcome previously identified resistance genes. A total of 125 synthetic hexaploid wheats (SHWs; 2n = 6x = 42, AABBDD, Triticum aestivum L.) were characterized for resistance to fungal pathogens that cause wheat rusts (leaf; Puccinia triticina, stem; P. graminis f.sp. tritici, and stripe; P. striiformis f.sp. tritici) and crown rot (Fusarium spp.); cereal cyst nematode (Heterodera spp.); and Hessian fly (Mayetiola destructor). A wide range of genetic variation was observed among SHWs for multiple (two to five) biotic stresses and 17 SHWs that were resistant to more than two stresses. The genomic regions and potential candidate genes conferring resistance to these biotic stresses were identified from a genome-wide association study (GWAS). This GWAS study identified 124 significant marker-trait associations (MTAs) for multiple biotic stresses and 33 of these were found within genes. Furthermore, 16 of the 33 MTAs present within genes had annotations suggesting their potential role in disease resistance. These results will be valuable for pyramiding novel genes/genomic regions conferring resistance to multiple biotic stresses from SHWs into elite bread wheat cultivars and providing further insights on a wide range of stress resistance in wheat.
Genre Article
Access Condition Open Access
Identifier 1422-0067