Record Details

<p>Boosting a Hybrid Model Recommendation System for Sparse Data using Collaborative Filtering and Deep Learning</p>

Online Publishing @ NISCAIR

View Archive Info
 
 
Field Value
 
Authentication Code dc
 
Title Statement <p>Boosting a Hybrid Model Recommendation System for Sparse Data using Collaborative Filtering and Deep Learning</p>
 
Added Entry - Uncontrolled Name Valarmathi, P ; National Institute of Technology Puducherry
Dhanalakshmi, R ; Indian Institute of Information Technology Tiruchirappalli
Rajagopalan, Narendran ; National Institute of Technology Puducherry
 
Uncontrolled Index Term Collaborative filtering; Neural network; Sparse inputs
 
Summary, etc. <p>The exponential increase in the volume of online data has generated a confront of overburden of data for online users, which slow down the suitable access to products of pursuit on the Web. This contributed to the need for recommendation systems. Recommender system is a special form of intelligent technique that takes advantage of past user transactions on products to give recommendations of products. Collaborative filtering has turn out to be the commonly adopted method of providing users with customized services, except that it endures the problem of sparsely rated inputs. For collaborative filtering, we introduce a deep learning-based architecture which evaluates a discrete factorisation of vectors from sparse inputs. The characteristics of the products are retrieved using a deep learning model, denoising auto encoders. The traditional collaborative filtering algorithm that predicts and uses the past history of consumer interest and product characteristics are updated with the characteristics obtained by deep learning model for sparse rated inputs. The results of sparse data problem tested on MovieLens data set will greatly enhance the user and product transaction.</p>
 
Publication, Distribution, Etc. Journal of Scientific and Industrial Research (JSIR)
2020-08-26 14:54:13
 
Electronic Location and Access application/pdf
http://op.niscair.res.in/index.php/JSIR/article/view/39569
 
Data Source Entry Journal of Scientific and Industrial Research (JSIR); ##issue.vol## 79, ##issue.no## 06
 
Language Note en