Record Details

Experimental study on developed electrochemical micro machining of hybrid MMC

NOPR - NISCAIR Online Periodicals Repository

View Archive Info
 
 
Field Value
 
Title Experimental study on developed electrochemical micro machining of hybrid MMC
 
Creator Kalra, Charanjit Singh
Kumar, Vinod
Manna, Alakesh
 
Subject Electrochemical micro machining
Hybrid MMC
Material removal rate
Electrode wear rate
 
Description 579-589
An electrochemical micro machining (ECMM) set-up has been developed and utilized for experiments. The effects of ECMM parameters on material removal rate and electrode wear rate have been analyzed during micro drilling of hybrid Al/(Al2O3p+SiCp+Cp)-MMC with tungsten electrode of diameter 298 µm. The machined surface texture, and decomposition of metallic compounds deposited on the workpiece as well as on micro tool have been analysed through SEM, EDX and XRD images. It may occur due to the reaction of the anode with electrolyte (NaCl). The formation of a new compound sodalite has been identified. This is due to the reaction between sodium chloride and reinforced particles i.e. Al2O3, SiC, C elements presence in hybrid MMC. It has also been identified that the formation of ferropargasite chlorous compound might be due to a chemical dissolution of ferrous material and reaction with sodium chloride. Formation of voids, micro-cracks, craters, debris, pulled out materials and pockmarks have been analyzed during micro machining at high current and pulse-on time parametric setting. From EDX analysis, it has been noticed that the reinforced particles present in hybrid metal matrix composite have been deposited on a micro tool. This is due to the melting and re-solidification of hybrid Al/MMC during machining by micro sparking at high supply voltage and pulse on time.
 
Date 2020-09-23T09:36:04Z
2020-09-23T09:36:04Z
2020-06
 
Type Article
 
Identifier 0975-1017 (Online); 0971-4588 (Print)
http://nopr.niscair.res.in/handle/123456789/55252
 
Language en_US
 
Rights CC Attribution-Noncommercial-No Derivative Works 2.5 India
 
Publisher NISCAIR-CSIR, India
 
Source IJEMS Vol.27(3) [June 2020]