Record Details

Electrochemical analysis of nitrite contamination in water using SnTe@GO modified glassy carbon electrode

NOPR - NISCAIR Online Periodicals Repository

View Archive Info
 
 
Field Value
 
Title Electrochemical analysis of nitrite contamination in water using SnTe@GO modified glassy carbon electrode
 
Creator Murugan, E
Dhamodharan, A
Poongan, A
Kalpana, K
 
Subject Grpahene oxide
Nitrite
Sensor
Tin Telluride
Voltammetry
 
Description 1313-1320
An electrochemically active tin telluride (SnTe) decorated graphene oxide (GO) (SnTe@GO) nanocomposite has been synthesized through simple experimental method and used the same for surface modification of glassy carbon electrode, thus developed a new efficient SnTe@GO/GCE which in turn has been demonstrated as a sensor for identification and quantification of nitrite species in water samples. Common analytical techniques are employed and established the physiochemical properties of SnTe@GO nanocomposite. The electrocatalytic activity of SnTe@GO/GCE has been examined towards sensing and quantification of nitrite through Cyclic Voltammetry and Differential Pulse Voltammetry techniques. The obtained results revel that SnTe@GO/GCE exhibited high sensitivity with wide linear range such as 9.8-162 mM and detection limit found to be 0.079 µM. In addition, in order to inspect the real time application of SnTe@GO/GCE, it is also employed and determined the concentration of nitrite in drinking water, pond water and well water samples which are collected from Rayapuram, Muttukadu and Guindy during the specific period. The LOD observed for drinking water collected from Rayapuram, Chennai are 1.63 μM, pond water collected from Muttukadu, Kanchipuram 2.5 μM, and the well water collected from Guindy, Chennai are 1.25 μM, and thus proves that the newly designed SnTe@GO/GCE is an excellent sensor for nitrite species even in real water sample analysis.
 
Date 2020-09-26T08:18:32Z
2020-09-26T08:18:32Z
2020-09
 
Type Article
 
Identifier 0975-0975(Online); 0376-4710(Print)
http://nopr.niscair.res.in/handle/123456789/55346
 
Language en_US
 
Rights CC Attribution-Noncommercial-No Derivative Works 2.5 India
 
Publisher NISCAIR-CSIR, India
 
Source IJC-A Vol.59A(09) [September 2020]