<strong>Dielectric dispersion and electrical conductivity of amorphous PVP–SiO2 and PVP–Al2O3 polymeric nanodielectric films</strong>
Online Publishing @ NISCAIR
View Archive InfoField | Value | |
Authentication Code |
dc |
|
Title Statement |
<strong>Dielectric dispersion and electrical conductivity of amorphous PVP–SiO2 and PVP–Al2O3 polymeric nanodielectric films</strong> |
|
Added Entry - Uncontrolled Name |
Choudhary, Shobhna ; CSIR-National Institute of Science Communication and Information Resources, New Delhi – 110 012, India |
|
Uncontrolled Index Term |
Polymer nanocomposite; Nanodielectrics; Dielectric properties; Electrical conductivity; XRD; Dielectric spectroscopy |
|
Summary, etc. |
The biodegradable hybrid polymer nanocomposite (PNC) films comprising silica (SiO<sub>2</sub>) and alumina (Al<sub>2</sub>O<sub>3</sub>) nanoparticles as inorganic nanofillers and the poly(vinyl pyrrolidone) (PVP) as organic host matrix (i.e., PVP–<em>x</em> wt% SiO<sub>2</sub> and PVP–<em>x</em> wt% Al<sub>2</sub>O<sub>3 </sub>for <em>x</em> = 0, 1, 3 and 5) have been prepared by aqueous solution-casting method. X-ray diffraction (XRD) study reveals that these nanocomposite materials are highly amorphous. The dielectric spectroscopy of these different nanofiller concentrations PNC films has been carried out in the frequency range from 20 Hz to 1 MHz at a fixed temperature and also for 3 wt% nanofillers containing PNC films with the temperature variation. The results confirm that the complex dielectric permittivity of these hybrid films is influenced by the interfacial polarization in the low frequency range of 20 Hz to 1 kHz, whereas in the high frequency range up to 1 MHz permittivity is mainly governed by the molecular polarization and remains almost independent of the frequency. These SiO<sub>2</sub> and Al<sub>2</sub>O<sub>3</sub> nanofillers containing PNC films at fixed temperature display anomalous behaviour of dielectric permittivity and ac electrical conductivity with the increase of nanofiller concentration, but these parameters significantly enhance at low frequencies with the increase of temperature of the films. The electric modulus spectra of Al<sub>2</sub>O<sub>3</sub> containing PNC film exhibit relaxation peaks below 100 Hz at higher temperatures which attribute to the interfacial polarization relaxation process. The frequency independent dielectric permittivity and significantly low loss of these PNC materials at radio frequencies confirm their suitability as polymeric nanodielectric (PND) substrate and insulator in the design and fabrication of biodegradable electronic devices and electrical components. |
|
Publication, Distribution, Etc. |
Indian Journal of Chemical Technology (IJCT) 2020-10-20 14:50:16 |
|
Electronic Location and Access |
application/pdf http://op.niscair.res.in/index.php/IJCT/article/view/31916 |
|
Data Source Entry |
Indian Journal of Chemical Technology (IJCT); ##issue.vol## 27, ##issue.no## 3 (2020): Indian Journal of Chemical Technology |
|
Language Note |
en |
|