<p>Latent Fingerprint Indexing for Faster Retrieval from Dataset with Image Enhancement Technique</p>
Online Publishing @ NISCAIR
View Archive InfoField | Value | |
Authentication Code |
dc |
|
Title Statement |
<p>Latent Fingerprint Indexing for Faster Retrieval from Dataset with Image Enhancement Technique</p> |
|
Added Entry - Uncontrolled Name |
Singh, Harivans Pratap; Department of Computer Science & Engineering, UTU Dehradun, Uttarakhand, India Dimri, Priti ; Department of Computer Science and Applications, G B Pant Engineering College, Ghurdauri, Uttarakhand, India Tiwari, Shailesh ; ABES Engineering College, Ghaziabad, UP, India Saraswat, Manish ; ABES Engineering College, Ghaziabad, UP, India |
|
Uncontrolled Index Term |
Latent fingerprints; Minutiae; Multi-layer Neural network; Segmentation |
|
Summary, etc. |
<p style="text-align: justify;">Since decades fingerprints have been the prime source in identification of suspects latent fingerprints are compared and examined with rolled and plain fingerprints which are stored in the dataset. The common challenges which are faced while examining latent fingerprints are background noise, nonlinear distortions, poor ridge clarity and partial impression of the finger. As conventional methods of Segmentation doesn’t perform well on latent fingerprints. The current advancement in machine learning based segmentation approach has been showing good results in terms of segmentation accuracy but lacks to provide accurate result in terms of matching accuracy. As one of the problem faced in matching latent fingerprint is low clarity of ridge-valley pattern which results in detection of false minutiae and poor matching accuracy. A multilayer processing of artificial neural network based segmentation is proposed to minimize the detection of false minutiae and increase the matching accuracy. This approach is designed on binary classification model where the simulation will be carried out on IIIT-D latent fingerprint dataset. Segmentation will be divided into full and partial impression fingerprints which are then compared with minutiae with the database using local and global matching algorithm. An improvised result is received which is more accurate as compared to the previous algorithms.</p> |
|
Publication, Distribution, Etc. |
Journal of Scientific and Industrial Research (JSIR) 2020-11-09 16:51:55 |
|
Electronic Location and Access |
application/pdf http://op.niscair.res.in/index.php/JSIR/article/view/41483 |
|
Data Source Entry |
Journal of Scientific and Industrial Research (JSIR); ##issue.vol## 79, ##issue.no## 8 (20) |
|
Language Note |
en |
|