Record Details

Enrich Ayurveda knowledge using machine learning techniques

Online Publishing @ NISCAIR

View Archive Info
 
 
Field Value
 
Authentication Code dc
 
Title Statement Enrich Ayurveda knowledge using machine learning techniques
 
Added Entry - Uncontrolled Name Roopashree, S ; Dayananda Sagar University , Bengaluru, India
Anitha, J ; RV Institute of Technology and Management, Bengaluru, India
 
Uncontrolled Index Term BoVW; Indian medicinal herbs; Machine learning; SIFT; SVM; Traditional medicine
 
Summary, etc. <p>In India, every region, urban or rural the whole population is dependent on plants for life sustenance in the form of food, shelter, clothes and medicines. Due to inflation, synthetic medicines have become less affordable and their side effect has led in seeking alternative medication system. Indian medicinal herbs and its uses are good alternates for curing many common ailments and diseases. Using computer vision and machine learning techniques, the Indian medicinal herbs can be classified based on their leaves and thus promote the Indian traditional system – Ayurveda to a great extent. In this paper, a systematic approach consisting of Scale Invariant Feature Transform (SIFT) which is uniform in nature to scale, illumination and rotation is combined with different classifiers. Different models are built using SIFT as the common feature extractor in combination with Support Vector Machine (SVM), K-Nearest Neighbor (kNN) and Naive Bayes Classifier. Finally, the proposed method consists of SIFT features with dimension reduction using Bag of Visual Words and classified by SVM. The work is carried over in comparison with newly built herb dataset and Flavia dataset. The model shows an accuracy of 94% with newly built dataset which consists of six Indian medicinal herbs.</p> <br />
 
Publication, Distribution, Etc. Indian Journal of Traditional Knowledge (IJTK)
2020-12-30 12:30:42
 
Electronic Location and Access application/pdf
http://op.niscair.res.in/index.php/IJTK/article/view/44537
 
Data Source Entry Indian Journal of Traditional Knowledge (IJTK); ##issue.vol## 19, ##issue.no## 4 (2020): Indian Journal of Traditional Knowledge
 
Language Note en