Record Details

A new insight on the understanding of carbonisation and graphitisation mechanisms

NOPR - NISCAIR Online Periodicals Repository

View Archive Info
 
 
Field Value
 
Title A new insight on the understanding of carbonisation and graphitisation mechanisms
 
Creator Puech, Pascal
Monthioux, Marc
 
Subject Carbonisation
Graphitisation
Modelling
X-ray diffraction
Bottom-up
 
Description 1095-1099
During carbonisation (primary and secondary) and then graphitisation processes, any organic precursor is subjected to deep structural changes which make it evolve from an isotropic to an anisotropic material, with the extent of the anisotropy being related to the starting elemental composition, and ultimately to the graphitisability. For decades, analysing X-ray diffraction patterns has been used to evidence the related structural evolution of the material, aiming at extracting the average crystallite dimension La and Lc as they closely relate to the material physical properties. In particular because of the two-dimensional nature of the graphene-based crystallites which develop in the material and, upon heat-treatment, either remain so for non-graphitisable carbons or gradually convert partially or fully into three-dimensional crystals for graphitizable carbons, accurately understanding and analysing XRD patterns has always been an issue. A new approach for analysing XRD data is described, designated as "bottom-up", meanwhile introducing the concept of Basic Structural Component. A better knowledge of the overall thermally-driven structure changes which occur in the material from the coke stage to the ultimate temperature of 2800 °C is achieved, which is expected to apply to any kind of carbons, whatever their graphitisability.
 
Date 2021-03-09T09:11:53Z
2021-03-09T09:11:53Z
2020-12
 
Type Article
 
Identifier 0975-1017 (Online); 0971-4588 (Print)
http://nopr.niscair.res.in/handle/123456789/56412
 
Language en_US
 
Rights CC Attribution-Noncommercial-No Derivative Works 2.5 India
 
Publisher NISCAIR-CSIR, India
 
Source IJEMS Vol.27(6) [December 2020]