Record Details

<strong>Adsorption technology and mechanism of As(III) and As(V) in wastewater by iron modified rice husk biochar</strong>

Online Publishing @ NISCAIR

View Archive Info
 
 
Field Value
 
Authentication Code dc
 
Title Statement <strong>Adsorption technology and mechanism of As(III) and As(V) in wastewater by iron modified rice husk biochar</strong>
 
Added Entry - Uncontrolled Name Zang, Shuyan
 
Uncontrolled Index Term Adsorption; Arsenate; Arsenite; Iron; Rice husk biochar
 
Summary, etc. <p>Arsenic pollution has become a common phenomenon, which seriously endangers the environment and poses a greatthreat to human health. In this paper, a novel method has been developed for simultaneous removal of composite arsenicpollution based on the modified rice husk biochar as an efficient adsorbent. Iron modified rice husk biochar (MRHB)adsorbent has been prepared using rice husk as raw material, NaHCO3 as pore expander, FeCl3ꞏ6H2O as modifier and NaOHas precipitant. The adsorption characteristics of MRHB for As(Ⅲ) and As(V) has been investigated on the basis of batchexperiments. X-ray diffraction, scanning electron microscopy, and Fourier Transform Infrared were carried out tocharacterize the composition and structure of MRHB. The results show that the arsenic concentration of 1.0 mg/L, adsorbentdosage of 1.0 g/L, the maximum removal rates of As(Ⅲ) and As(V) are 99.88% and 99.93% at pH of 5. The adsorptionperformance of MRHB for As(V) and As(V) fits well to the pseudo-second-order kinetic model, indicating that thechemisorption control plays a dominant role in adsorption process. Results from this study demonstrated the promise ofMRHB in application as an efficient and environmentally friendly adsorbent for composite arsenic pollution.</p>
 
Publication, Distribution, Etc. Indian Journal of Chemical Technology (IJCT)
2022-09-05 12:45:39
 
Electronic Location and Access application/pdf
http://op.niscair.res.in/index.php/IJCT/article/view/62149
 
Data Source Entry Indian Journal of Chemical Technology (IJCT); ##issue.vol## 29, ##issue.no## 5 (2022): Indian Journal of Chemical Technology
 
Language Note en