Record Details

DSpace at IIT Bombay

View Archive Info
 

Metadata

 
Field Value
 
Title Experimental study of flow boiling in microchannel
 
Names SINGH, SG
DUTTAGUPTA, SP
KULKARNI, AM
PURANIK, BP
AGRAWAL, A
Date Issued 2007 (iso8601)
Abstract With the reduction in size of electronic devices, the problem of efficient cooling is becoming more and more severe. Boiling heat transfer in microchannels is fast emerging as a promising solution to the problem. In the present work, microchannels were fabricated on a silicon wafer. A chrome-gold micro-heater was integrated and characterized on the other side of the wafer. The change in resistance of the micro-heater in the temperature range of 20 degrees C - 120 degrees C was found to be within 10%. Deionized water was used as working fluid in microchannel. The single-phase pressure drop across-the microchannel was found to increase linearly with increasing flow rate in confirmation with conventional laminar flow theory. Also, the pressure drop decreases with an increase in heat input due to a reduction in viscosity. The study was extended to two phase flow with flow rate and heat flux as the control parameters. The onset of two phase flow, at a given heat flux, with a decrease in flow rate, can be identified by the departure of linear pressure drop to non-linearity; this point was also confirmed through visual observation. In two-phase region of flow, pressure drop was found to increase initially, passes through a maximum and then decreases, with a decrease in flow rate. The experiments are performed for several heat fluxes. Both the onset of two phase and maximum pressure drop in the two phase region shifts to higher flow rates with an increase in heat input. Such detailed experimental results seem to be missing from the literature and are expected to be useful for modeling of boiling heat transfer in microchannels. Another pertinent observation is presence of instability in two-phase flow. It was found that at higher flow rate and heat flux instability in two-phase flow was more. An attempt to record these instabilities was made and preliminary data on their frequency will be presented. This study may help to choose suitable operating conditions for a microchannel heat sink for use in electronics cooling.
Genre Proceedings Paper
Topic Heat-Transfer
Identifier ICNMM2007: PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON NANOCHANNELS, MICROCHANNELS, AND MINICHANNELS,229-235