Record Details

The multiple origins of aluminium resistance in hexaploid wheat include Aegilops tauschii and more recent cis mutations to TaALMT1

KRISHI: Publication and Data Inventory Repository

View Archive Info
 
 
Field Value
 
Title The multiple origins of aluminium resistance in hexaploid wheat include Aegilops tauschii and more recent cis mutations to TaALMT1
Not Available
 
Creator Peter R. Ryan1, Harsh Raman, Sanjay Gupta, Takayuki Sasaki, Yoko Yamamoto and Emmanuel Delhaize
 
Subject evolution, aluminium,resistance,tolerance
 
Description Not Available
Acid soils limit plant production worldwide because their high concentrations of soluble aluminium cations (Al(3+) ) inhibit root growth. Major food crops such as wheat (Triticum aestivum L.) have evolved mechanisms to resist Al(3+) toxicity, thus enabling wider distribution. The origins of Al(3+) resistance in wheat are perplexing because all progenitors of this hexaploid species are reportedly sensitive to Al(3+) stress. The large genotypic variation for Al(3+) resistance in wheat is largely controlled by expression of an anion channel, TaALMT1, which releases malate anions from the root apices. A current hypothesis proposes that the malate anions protect this sensitive growth zone by binding to Al(3+) in the apoplasm. We investigated the evolution of this trait in wheat, and demonstrated that it has multiple independent origins that enhance Al(3+) resistance by increasing TaALMT1 expression. One origin is likely to be Aegilops tauschii while other origins occurred more recently from a series of cis mutations that have generated tandemly repeated elements in the TaALMT1 promoter. We generated transgenic plants to directly compare these promoter alleles and demonstrate that the tandemly repeated elements act to enhance gene expression. This study provides an example from higher eukaryotes in which perfect tandem repeats are linked with transcriptional regulation and phenotypic change in the context of evolutionary adaptation to a major abiotic stress.
Not Available
 
Date 2018-11-02T06:42:49Z
2018-11-02T06:42:49Z
2010-10-26
 
Type Research Paper
 
Identifier Not Available
Not Available
http://krishi.icar.gov.in/jspui/handle/123456789/9062
 
Language English
 
Relation Not Available;
 
Publisher Wiley online library