Record Details

Long-term irrigation with zinc smelter effluent affects important soil properties and heavy metal content in food crops and soil in Rajasthan, India.

KRISHI: Publication and Data Inventory Repository

View Archive Info
 
 
Field Value
 
Title Long-term irrigation with zinc smelter effluent affects important soil properties and heavy metal content in food crops and soil in Rajasthan, India.
Not Available
 
Creator Ray, P., Datta, S.P. and Dwivedi, B.S.
 
Subject Agricultural crops, effluent irrigation, ecological risk, heavy metals, zinc smelter.
 
Description Not Available
Use of wastewater for irrigating agricultural crops is on the rise, particularly in the developing countries. The present study was undertaken to assess the long-term effect of irrigation with zinc smelter effluent on important soil properties including heavy metal status. Metal concentration in the edible parts of the crops grown on smelter effluent-irrigated soils was also measured. For this purpose, the agricultural lands which have been receiving the zinc smelter effluent irrigation for about five decades at Debari, Udaipur, India were selected. The adjacent tubewell water-irrigated fields were selected as reference. Long-term irrigation with smelter effluent resulted into significant buildup of ethylenediaminetetraacetic acid extractable Zn (57.7 fold), Cu (4.51 fold), Fe (3.35 fold), Mn (1.77 fold), Ni (1.20 fold), Pb (45.1 fold), and Cd (79.2 fold) in soils over tubewell water-irrigated fields. Total Zn, Cu, Mn, Ni, Pb, and Cd content in effluent-irrigated soils was also increased by 27.0, 1.60, 1.40, 1.30, 26.2, and 167 fold, respectively. Risk assessment indicated a very high to moderate potential ecological risk due to Cd, Pb, and Zn in soils close to the immediate vicinity of the smelter plant. Cadmium and Pb concentrations in edible parts of almost all the crops grown on effluent-irrigated soils were above the safe limit of CODEX commission. On an average, soil pH dropped by 0.31 units due to smelter effluent irrigation. Smelter effluent irrigation resulted into significant increase in soil organic carbon, electrical conductivity, and CaCO3 content. On an average, there was decrease in available N (21.0%) and P (20.8%) content in effluent-irrigated soils over the tubewell water-irrigated ones. An increase in available K (102%) and S (26.0 fold) was recorded in effluent-irrigated soils. Long-term irrigation with zinc smelter effluent resulted into reduced microbial activities in soil as evidenced from the level of microbial biomass carbon and dehydrogenase activity. In view of the buildup of heavy metals and subsequent imbalance in essential plant nutrients in smelter effluent-irrigated soils, appropriate remediation-cum-fertilization strategy needs to be adopted for better soil health and plant nutrition.
Not Available
 
Date 2020-12-26T07:08:19Z
2020-12-26T07:08:19Z
2017-11-20
 
Type Research Paper
 
Identifier Not Available
Not Available
http://krishi.icar.gov.in/jspui/handle/123456789/43735
 
Language English
 
Relation Not Available;
 
Publisher Not Available