Record Details

Influence of potassium solubilizing microorganism (Bacillus mucilaginosus) and waste mica on potassium uptake dynamics by sudan grass (Sorghum vulgare Pers.) grown under two Alfisols

KRISHI: Publication and Data Inventory Repository

View Archive Info
 
 
Field Value
 
Title Influence of potassium solubilizing microorganism (Bacillus mucilaginosus) and waste mica on potassium uptake dynamics by sudan grass (Sorghum vulgare Pers.) grown under two Alfisols
Not Available
 
Creator B. B. Basak
D. R. Biswas
 
Subject Waste mica, Alifsol, Sudan grass, Bacillus mucilaginosus, Pools of K, X-ray diffraction analysis
 
Description Not Available
The main aim of this research was to study the dynamics of K release from waste mica inoculated with potassium solubilizing microorganism (Bacillus mucilaginosus) and to investigate its effectiveness as potassic-fertilizer using sudan grass (Sorghum vulgare Pers.) var Sudanensis as test crop grown under two Alfisols. Results revealed that application of mica significantly enhanced biomass yield, uptake and per cent K recoveries by sudan grass than control (no-K). Biomass yield, uptake and per cent K recoveries increased further when mica was inoculated with bacterial strain in both the soils than uninoculated mica. Alfisol from Hazaribag recorded higher yield, uptake and K recoveries than Alfisol from Bhubaneswar. The dynamics of K in soils indicated that K was released from mica to water-soluble and exchangeable pools of K due to inoculation of mica with Bacillus mucilaginosus in both the soils. Significantly greater amounts of water-soluble, exchangeable and non-exchangeable K were maintained in Alfisol from Hazaribag than Bhubaneswar. Release kinetics of K showed significant release of K from mica treated with bacterial strain. Significant correlation between biomass yield, K uptake by sudan grass and different pools of K in soils were observed. X-ray diffraction analysis indicates greater dissolution of mica due to inoculation of Bacillus mucilaginosus strain in both the soils. Thus, bio-intervention of waste mica could be an alternative and viable technology to solubilize insoluble K into plant available pool and used efficiently as a source of K-fertilizer for sustaining crop production and maintaining soil potassium.
ICAR
 
Date 2020-08-03T09:50:17Z
2020-08-03T09:50:17Z
2009-04-01
 
Type Research Paper
 
Identifier Basak, B.B., Biswas, D.R. Influence of potassium solubilizing microorganism (Bacillus mucilaginosus) and waste mica on potassium uptake dynamics by sudan grass (Sorghum vulgare Pers.) grown under two Alfisols. Plant Soil 317, 235–255 (2009). https://doi.org/10.1007/s11104-008-9805-z
Not Available
http://krishi.icar.gov.in/jspui/handle/123456789/38900
 
Language English
 
Relation Not Available;
 
Publisher Springer