Record Details

Non-target effect of bispyribac sodium on soil microbial community in paddy soil

KRISHI: Publication and Data Inventory Repository

View Archive Info
 
 
Field Value
 
Title Non-target effect of bispyribac sodium on soil microbial community in paddy soil
Not Available
 
Creator Kumar, U., Behera, S., Saha, S., Das, D., Guru, P.K., Kaviraj, M., Munda, S., Adak, T. and Nayak, A.K.
 
Subject Bispyribac sodium, Biolog, Microbial properties, Microcosms, Paddy soil, Herbicide
 
Description Not Available
Bispyribac sodium is frequently used herbicide in the rice field. Though, it has been targeted to kill rice weeds, but its non-target effect on soil microbes in paddy soil was largely unknown. Therefore, in the present study, an attempt was made to assess the non-target effect of bispyribac sodium on alteration of functional variation of soil microbial community and their correlation with microbial biomass carbon (MBC) and soil enzymes. A microcosm experiment set up was made comprising three treatments viz., control (CON) (without application of bispyribac sodium), recommended dose of bispyribac sodium (35 g ha-1) (BS), and double the dose of BS (70 g ha-1) (DBS). Results indicated that the MBC and soil enzyme activities (dehydrogenase, alkaline phosphatase and urease) in BS and DBS-treated soil were significantly (p < 0.05) declined from 1st to 30th day after application as compared to CON. Counts of heterotrophic bacteria, actinomycetes and fungal population were also decreased in BS and DBS-treated soil. The average well color development (AWCD) values derived from Biolog®ecoplates followed the order of DBS ˂ BS ˂ CON. Shannon index value was high (p ≤ 0.05) in CON compared to soil-treated with BS and DBS. Principal component analysis (PCA) showed a clear distinction of the
cluster of treatments between CON, BS and DBS. Biplot analysis and heatmap suggested that carboxylic compounds and amino acids showed positive response towards BS-treated soil, whereas phenolic compounds had positive correlation with DBS-treated soil. PCA analysis indicated that oligotrophs was rich in BS-treated paddy soil, whereas copiotrophs and asymbiotic nitrogen fixers were richer in DBS treatment. Overall, the present study revealed that application of recommended dose of BS and its double dose alter the soil microbial population, enzyme activities and functional microbial diversity in paddy soil.
ICAR
 
Date 2021-01-01T11:09:03Z
2021-01-01T11:09:03Z
2019-11-27
 
Type Research Paper
 
Identifier Kumar, U., Behera, S., Saha, S., Das, D., Guru, P.K., Kaviraj, M., Munda, S., Adak, T. and Nayak, A.K., 2020. Non-target effect of bispyribac sodium on soil microbial community in paddy soil. Ecotoxicology and Environmental Safety, 189, p.110019.
Not Available
http://krishi.icar.gov.in/jspui/handle/123456789/44388
 
Language English
 
Relation Not Available;
 
Publisher Elsevier