Record Details

Biological nitrogen fixation and prospects for ecological intensification in cereal-based cropping systems

CGSpace

View Archive Info
 
 
Field Value
 
Title Biological nitrogen fixation and prospects for ecological intensification in cereal-based cropping systems
 
Creator Ladha, Jagdish K.
Peoples, Mark B.
Reddy, Pallavolu M.
Biswas, Jatish C.
Bennett, Alan
Jat, Mangi L.
Krupnik, Timothy J.
 
Subject cereals
crop production
fertilizer application
growth rate
legumes
nitrogen cycle
nitrogen fixation
nitrogen fixing bacteria
 
Description The demand for nitrogen (N) for crop production increased rapidly from the middle of the twentieth century and is predicted to at least double by 2050 to satisfy the on-going improvements in productivity of major food crops such as wheat, rice and maize that underpin the staple diet of most of the world's population. The increased demand will need to be fulfilled by the two main sources of N supply – biological nitrogen (gas) (N2) fixation (BNF) and fertilizer N supplied through the Haber-Bosch processes. BNF provides many functional benefits for agroecosystems. It is a vital mechanism for replenishing the reservoirs of soil organic N and improving the availability of soil N to support crop growth while also assisting in efforts to lower negative environmental externalities than fertilizer N. In cereal-based cropping systems, legumes in symbiosis with rhizobia contribute the largest BNF input; however, diazotrophs involved in non-symbiotic associations with plants or present as free-living N2-fixers are ubiquitous and also provide an additional source of fixed N. This review presents the current knowledge of BNF by free-living, non-symbiotic and symbiotic diazotrophs in the global N cycle, examines global and regional estimates of contributions of BNF, and discusses possible strategies to enhance BNF for the prospective benefit of cereal N nutrition. We conclude by considering the challenges of introducing in planta BNF into cereals and reflect on the potential for BNF in both conventional and alternative crop management systems to encourage the ecological intensification of cereal and legume production.
 
Date 2022-07-01
2023-01-01T16:18:22Z
2023-01-01T16:18:22Z
 
Type Journal Article
 
Identifier Ladha, J.K., Peoples, M.B., Reddy, P.M., Biswas, J.C., Bennett, A., Jat, M.L. and Krupnik, T.J. 2022. Biological nitrogen fixation and prospects for ecological intensification in cereal-based cropping sys-tems. Field Crops Research 283:108541. https://hdl.handle.net/10883/22062
1872-6852
https://hdl.handle.net/10568/126447
https://hdl.handle.net/10883/22062
https://doi.org/10.1016/j.fcr.2022.108541
 
Language en
 
Rights CC-BY-4.0
Open Access
 
Format application/pdf
 
Source Field Crops Research