Record Details

Construction of reference chromosome-scale pseudomolecules for potato: Integrating the potato genome with genetic and physical maps

CGSpace

View Archive Info
 
 
Field Value
 
Title Construction of reference chromosome-scale pseudomolecules for potato: Integrating the potato genome with genetic and physical maps
 
Creator Sharma, S.K.
Bolser, D.
Boer, J. de.
Sonderkaer, M.
Amoros, W.
Carboni, M.F.
D'Ambrosio, J.M.
Cruz, G. de la
Genova, A. di
Douches, D.S.
Eguiluz, M.
Guo, X.
Guzmán, F.
Hackett, C.A.
Hamilton, J.P.
Li, G.
Li, Y.
Lozano, R.
Maass, A.
Marshall, D.
Martínez, D.
McLean, K.
Mejia, N.
Milne, L.
Munive, S.
Nagy, I.
Ponce, O.
Ramírez, M.
Simon, R.
Thomson, S.J.
Torres, Y.
Waugh, R.
Zhang, Z.
Huang, S.
Visser, Richard G.F.
Bachem, C.W.B.
Sagredo, B.
Feingold, S.E.
Orjeda, G.
Veilleux, R.E.
Bonierbale, Merideth W.
Jacobs, J.M.E.
Milbourne, D.
Martin, D.M.A.
Bryan, Glenn J.
 
Subject potatoes
genomes
genetic maps
genetics
molecular biology
 
Description The genome of potato, a major global food crop, was recently sequenced. The work presented here details the integration of the potato reference genome (DM) with a new sequence-tagged site marker−based linkage map and other physical and genetic maps of potato and the closely related species tomato. Primary anchoring of the DM genome assembly was accomplished by the use of a diploid segregating population, which was genotyped with several types of molecular genetic markers to construct a new ~936 cM linkage map comprising 2469 marker loci. In silico anchoring approaches used genetic and physical maps from the diploid potato genotype RH89-039-16 (RH) and tomato. This combined approach has allowed 951 superscaffolds to be ordered into pseudomolecules corresponding to the 12 potato chromosomes. These pseudomolecules represent 674 Mb (~93%) of the 723 Mb genome assembly and 37,482 (~96%) of the 39,031 predicted genes. The superscaffold order and orientation within the pseudomolecules are closely collinear with independently constructed high density linkage maps. Comparisons between marker distribution and physical location reveal regions of greater and lesser recombination, as well as regions exhibiting significant segregation distortion. The work presented here has led to a greatly improved ordering of the potato reference genome superscaffolds into chromosomal “pseudomolecules”.
 
Date 2013-11-01
2015-03-11T12:08:40Z
2015-03-11T12:08:40Z
 
Type Journal Article
 
Identifier Sharma, S.K.; Bolser, D.; Boer, J. de.; Sonderkaer, M.; Amoros, W.; Carboni, M.F.; D'Ambrosio, J.M.; Cruz, G. de la.; Di Genova, A.; Douches, D.S.; Eguiluz, M.; Guo, X.; Guzman, F.; Hackett, C.A.; Hamilton, J.P.; Li, G.; Li, Y.; Lozano, R.; Maass, A.; Marshall, D.; Martinez, D.; McLean, K.; Mejia, N.; Milne, L.; Munive, S. ; Nagy, I.; Ponce, O.; Ramirez, M.; Simon, R.; Thomson, S.J.; Torres, Y.; Waugh, R.; Zhang, Z.; Huang, S.; Visser, R.G.F.; Bachem, C.W.B.; Sagredo, B.; Feingold, S.E.; Orjeda, G.; Veilleux, R.E.; Bonierbale, M.; Jacobs, J.M.E.; Milbourne, D.; Martin, D.M.A.; Bryan, G.J. 2013. Construction of reference chromosome-scale pseudomolecules for potato: Integrating the potato genome with genetic and physical maps. G3: Genes, Genomes, Genetics. 3(11):2031-2047.
2160-1836
https://hdl.handle.net/10568/57084
https://doi.org/10.1534/g3.113.007153
 
Language en
 
Rights CC-BY-4.0
Open Access
 
Format p. 2031-2047
application/pdf
 
Publisher Oxford University Press
 
Source G3: Genes, Genomes, Genetics