Record Details

Water budgeting in conservation agriculture-based sub-surface drip irrigation using HYDRUS-2D in rice under annual rotation with wheat in Western Indo-Gangetic Plains

CGSpace

View Archive Info
 
 
Field Value
 
Title Water budgeting in conservation agriculture-based sub-surface drip irrigation using HYDRUS-2D in rice under annual rotation with wheat in Western Indo-Gangetic Plains
 
Creator Rana, Biswajit
Parihar, Chhiter Mal
Nayak, Hari Sankar
Patra, Kiranmoy
Singh, Vijendra Kumar
Singh, Dharmendra K.
Pandey, Renu
Abdallah, Ahmed M.
Gupta, Naveen
Sidhu, Harminder Singh
Gerard, Bruno
Jat, Mangi L.
 
Subject irrigation methods
nitrogen
radiation
water balance
 
Description Rapidly depleting groundwater in western Indo-Gangetic Plains (IGP) is a major threat to food security in South Asia. Conventional tillage-based and flood irrigated puddled transplanted rice (PTR) is a major contributor to faster depleting aquifers. Urgent actions are therefore warranted to develop alternate productive, profitable, water and N-use efficient rice production practices for rice-wheat (RW) cropping system. Conservation agriculture (CA) based direct-seeded rice (DSR) has been advocated as a potential alternative to PTR. Further, bundling CA with precision water and N management using sub-surface drip irrigation (SSD) has demonstrated significant benefits over CA-based flood irrigation (FI). However, for more efficient use of water, water budgeting is needed which is a challenging task as it requires expensive tools, and time, and efforts. Information about complete water budgeting in high water demanding crops like rice grown under CA-based SSD, FI, and PTR are not available. We deployed HYDRUS-2D model for estimating water budgeting of rice under CA+ (CA-based SSD), CA-based FI, and PTR-based systems. The objective of our study was to calibrate and validate the HYDRUS-2D model to simulate water dynamics in rice grown under CA-based SSD and FI compared to PTR and to design water and N- use efficient production practices for rice cultivation in western IGP. Five treatments comprised of PTR+FI with 120 kg N ha−1 (PTR), zero-till direct-seeded rice (ZTDSR)+FI without N (ZT-N0), ZTDSR+FI with 100% of N recommended dose (ZT-N100), ZTDSR+SSD without N (SSD-N0), and ZTDSR+SSD with 100% of N-recommended dose (SSD-N100) were compared. The result showed that the HYDRUS-2D model satisfactorily simulated the soil moisture content with low root mean square error (RMSE) (0.014–0.028), high coefficient of determination (74–92%), and model efficiency (59–87%) during the simulation period (80 days: 35–114 days after sowing). The highest grain yield (7.18 t ha−1) was observed in the PTR treatment, which was statistically similar to SSD-N100 (6.54 t ha−1) and significantly higher than ZT-N100. During the simulation period, PTR plots received 131.7 cm of water (rainfall + irrigation) which was 27.3% and 50.1% higher than ZT-N100 and SSD-N100 plots, respectively. Out of the cumulative water applied, PTR transpired only 18.4% of applied water, compared to 24% in ZT-N100 and 36.3% in SSD-N100. Interestingly, SSD-N100 plots recorded 20.6% and 23.5% less evaporative loss and 45.0% and 66.0% less water loss by deep drainage than ZT-N100 and PTR, respectively. Thus, conversion to CA+ system with 100% N-recommended dose saved 50.1% and 31.3% of water, and consequently attained 2.0 and 1.45-times higher biomass water use efficiency than PTR and ZT-N100, respectively. Based on the results, CA-based SSD could be recommended for precise utilization of water and to curtails the unproductive water loss components such as evaporation and deep drainage.
 
Date 2022-06-01
2023-01-10T20:11:14Z
2023-01-10T20:11:14Z
 
Type Journal Article
 
Identifier Rana, B., Parihar, C. M., Nayak, H.S., Patra, K., Singh, V.K., Singh, D.K., Pandey, R., Abdallah, A., Gupta, N., Sidhu, H.S., Gerard, B. and Jat, M.L. 2022. Water budgeting in conservation agriculture-based sub-surface drip irrigation using HYDRUS-2D in rice under annual rotation with wheat in Western Indo-Gangetic Plains. Field Crops Research, 282, 108519
1872-6852
https://hdl.handle.net/10568/126779
https://doi.org/10.1016/j.fcr.2022.108519
 
Language en
 
Rights Copyrighted; all rights reserved
Limited Access
 
Publisher Elsevier
 
Source Field Crops Research