Quality Control of CyGNSS Reflectivity for Robust Spatiotemporal Detection of Tropical Wetlands
CGSpace
View Archive InfoField | Value | |
Title |
Quality Control of CyGNSS Reflectivity for Robust Spatiotemporal Detection of Tropical Wetlands
|
|
Creator |
Arai, Hironori
Zribi, Mehrez Oyoshi, Kei Dassas, Karin Huc, Mireille Sobue, Shinichi Thuy Le Toan |
|
Subject |
climate change
food systems deltas climate change mitigation |
|
Description |
The aim of this study was to develop a robust methodology for evaluating the spatiotemporal dynamics of the inundation status in tropical wetlands with the currently available Global Navigation Satellite System-Reflectometry (GNSS-R) data by proposing a new quality control technique called the “precision index”. The methodology was applied over the Mekong Delta, one of the most important rice-production systems comprising aquaculture areas and natural wetlands (e.g., mangrove forests, peatlands). Cyclone Global Navigation Satellite System (CyGNSS) constellation data (August 2018–December 2021) were used to evaluate the spatiotemporal dynamics of the reflectivity G over the delta. First, the reflectivity G, shape and size of each specular footprint and the precision index were calibrated at each specular point and reprojected to a 0.0045◦ resolution (approximately equivalent to 500 m) grid at a daily temporal resolution (Lv. 2 product); then, the results were obtained considering bias-causing factors (e.g., the velocity/effective scattering area/incidence angle). The Lv. 2 product was temporally integrated every 15 days with a Kalman smoother (+/− 14 days temporal localization with Gaussian kernel: 1σ = 5 days). By applying the smoother, the regional-annual dynamics over the delta could be clearly visualized. The behaviors of the GNSS-R reflectivity and the Advanced Land Observing Satellite-2 Phased-Array type L-band Synthetic Aperture Radar-2 quadruple polarimetric scatter signals were compared and found to be nonlinearly correlated due to the influence of the incidence angle and the effective scattering area. |
|
Date |
2022-11-02
2022-12-14T11:20:23Z 2022-12-14T11:20:23Z |
|
Type |
Journal Article
|
|
Identifier |
Arai, H., Zribi, M., Oyoshi, K., Dassas, K., Huc, M., Sobue, S. and Toan, T.L. 2022. Quality Control of CyGNSS Reflectivity for Robust Spatiotemporal Detection of Tropical Wetlands. Remote Sensing 14(22):5903. https://doi.org/10.3390/rs14225903
2072-4292 https://hdl.handle.net/10568/125976 https://www.mdpi.com/2072-4292/14/22/5903 https://doi.org/10.3390/rs14225903 |
|
Language |
en
|
|
Rights |
CC-BY-4.0
Open Access |
|
Publisher |
MDPI AG
|
|
Source |
Remote Sensing
|
|