Record Details

Differential root transcriptomics in a polyploid non-model crop: the importance of respiration during osmotic stress

CGSpace

View Archive Info
 
 
Field Value
 
Title Differential root transcriptomics in a polyploid non-model crop: the importance of respiration during osmotic stress
 
Creator Zorrilla-Fontanesi, Yasmín
Rouard, M.
Cenci, A.
Kissel, E.
Do, H.
Dubois, E.
Nidelet, S.
Roux, N.
Swennen, Rony L.
Carpentier, Sebastien C.
 
Subject osmotic stress
bananas
drought stress
drought tolerance
 
Description To explore the transcriptomic global response to osmotic stress in roots, 18 mRNA-seq libraries were generated from three triploid banana genotypes grown under mild osmotic stress (5% PEG) and control conditions. Illumina sequencing produced 568 million high quality reads, of which 70–84% were mapped to the banana diploid reference genome. Using different uni- and multivariate statistics, 92 genes were commonly identified as differentially expressed in the three genotypes. Using our in house workflow to analyze GO enriched and underlying biochemical pathways, we present the general processes affected by mild osmotic stress in the root and focus subsequently on the most significantly overrepresented classes associated with: respiration, glycolysis and fermentation. We hypothesize that in fast growing and oxygen demanding tissues, mild osmotic stress leads to a lower energy level, which induces a metabolic shift towards (i) a higher oxidative respiration, (ii) alternative respiration and (iii) fermentation. To confirm the mRNA-seq results, a subset of twenty up-regulated transcripts were further analysed by RT-qPCR in an independent experiment at three different time points. The identification and annotation of this set of genes provides a valuable resource to understand the importance of energy sensing during mild osmotic stress.
 
Date 2016-03-03
2016-04-13T11:21:36Z
2016-04-13T11:21:36Z
 
Type Journal Article
 
Identifier Zorrilla-Fontanesi, Y., Rouard, M., Cenci, A., Kissel, E., Do, H., Dubois, E., Nidelet, S., Roux, N., Swennen, R. & Carpentier, S.C. (2016). Differential root transcriptomics in a polyploid non-model crop: the importance of respiration during osmotic stress. Scientific Reports, 6, 1-14
2045-2322
https://hdl.handle.net/10568/72891
https://doi.org/10.1038/srep22583
 
Language en
 
Rights CC-BY-4.0
Open Access
 
Format 1-14
application/pdf
 
Publisher Springer
 
Source Scientific Reports