Record Details

Identification of iron and zinc responsive genes in pearl millet using genome-wide RNA-sequencing approach

CGSpace

View Archive Info
 
 
Field Value
 
Title Identification of iron and zinc responsive genes in pearl millet using genome-wide RNA-sequencing approach
 
Creator Goud, Chengeshpur Anjali
Satturu, Vanisri
Malipatil, Renuka
Viswanath, Aswini
Semalaiyappan, Janani
Kudapa, Himabindu
Rathod, Santosha
Rathore, Abhishek
Govindaraj, Mahalingam
Thirunavukkarasu, Nepolean
 
Subject malnutrition
biofortification
genes
iron
zinc
malnutriciĆ³n
bioenriquecimiento
 
Description Pearl millet (Pennisetum glaucum L.), an important source of iron (Fe) and zinc (Zn) for millions of families in dryland tropics, helps in eradicating micronutrient malnutrition. The crop is rich in Fe and Zn, therefore, identification of the key genes operating the mineral pathways is an important step to accelerate the development of biofortified cultivars. In a first-of-its kind experiment, leaf and root samples of a pearl millet inbred ICMB 1505 were exposed to combinations of Fe and Zn stress conditions using the
hydroponics method, and a whole-genome transcriptome assay was carried out to characterize the differentially expressed genes (DEGs) and pathways. A total of 37,093 DEGs under different combinations of stress conditions were identified, of which, 7,023 and 9,996 DEGs were reported in the leaf and root stress treatments, respectively. Among the 10,194 unique DEGs, 8,605
were annotated to cellular, biological, and molecular functions and 458 DEGs were assigned to 39 pathways. The results revealed the expression of major genes related to the mugineic acid pathway, phytohormones, chlorophyll biosynthesis, photosynthesis, and carbohydrate metabolism during Fe and Zn stress. The cross-talks between the Fe and Zn provided information on their
dual and opposite regulation of key uptake and transporter genes under Fe and Zn deficiency. SNP haplotypes in rice, maize, sorghum, and foxtail millet as well as in Arabidopsis using pearl millet Fe and Zn responsive genes could be used for designing the markers in staple crops. Our results will assist in developing Fe and Zn-efficient pearl millet varieties in biofortification breeding
programs and precision delivery mechanisms to ameliorate malnutrition in South Asia and Sub-Saharan Africa.
 
Date 2022-11-22
2023-02-16T09:29:10Z
2023-02-16T09:29:10Z
 
Type Journal Article
 
Identifier Goud, C.A.; Satturu, V.; Malipatil, R.; Viswanath, A.; Semalaiyappan, J.; Kudapa, H.; Rathod, Santosha; Rathore, Abhishek; Govindaraj, Mahalingam; Thirunavukkarasu, Nepolean (2022) Identification of iron and zinc responsive genes in pearl millet using genome-wide RNA-sequencing approach. Frontiers in Nutrition 9:884381 17 p. ISSN: 2296-861X
2296-861X
https://hdl.handle.net/10568/128721
https://doi.org/10.3389/fnut.2022.884381
 
Language en
 
Rights CC-BY-4.0
Open Access
 
Format 17 p.
application/pdf
 
Publisher Frontiers Media SA
 
Source Frontiers in Nutrition