Replication data for: Explaining Systematic Bias and Nontransparency in US Social Security Administration Forecasts
Harvard Dataverse (Africa Rice Center, Bioversity International, CCAFS, CIAT, IFPRI, IRRI and WorldFish)
View Archive InfoField | Value | |
Title |
Replication data for: Explaining Systematic Bias and Nontransparency in US Social Security Administration Forecasts
|
|
Identifier |
https://doi.org/10.7910/DVN/28323
|
|
Creator |
Kashin, Konstantin
King, Gary Soneji, Samir |
|
Publisher |
Harvard Dataverse
|
|
Description |
The accuracy of U.S. Social Security Administration (SSA) demographic and financial forecasts is crucial for the solvency of its Trust Funds, other government programs, industry decision making, and the evidence base of many scholarly articles. Because SSA makes public little replication information and uses qualitative and antiquated statistical forecasting methods, fully independent alternative forecasts (and the ability to score policy proposals to change the system) are nonexistent. Yet, no systematic evaluation of SSA forecasts has ever been published by SSA or anyone else --- until a companion paper to this one (King, Kashin, and Soneji, 2015a). We show that SSA's forecasting errors were approximately unbiased until about 2000, but then began to grow quickly, with increasingly overconfident uncertainty intervals. Moreover, the errors are all in the same potentially dangerous direction, making the Social Security Trust Funds look healthier than they actually are. We extend and then attempt to explain these findings with evidence from a large number of interviews we conducted with participants at every level of the forecasting and policy processes. We show that SSA's forecasting procedures meet all the conditions the modern social-psychology and statistical literatures demonstrate make bias likely. When those conditions mixed with potent new political forces trying to change Social Security, SSA's actuaries hunkered down trying hard to insulate their forecasts from strong political pressures. Unfortunately, this otherwise laudable resistance to undue influence, along with their ad hoc qualitative forecasting models, led the actuaries to miss important changes in the input data. Retirees began living longer lives and drawing benefits longer than predicted by simple extrapolations. We also show that the solution to this problem involves SSA or Congress implementing in government two of the central projects of political science over the last quarter century: [1] promoting transparency in data and methods and [2] replacing with formal statistical models large numbers of qualitative decisions too complex for unaided humans to make optimally.
|
|
Subject |
Social Sciences
|
|