Replication Data for: Bias due to network misspecification under spatial dependence
Harvard Dataverse (Africa Rice Center, Bioversity International, CCAFS, CIAT, IFPRI, IRRI and WorldFish)
View Archive InfoField | Value | |
Title |
Replication Data for: Bias due to network misspecification under spatial dependence
|
|
Identifier |
https://doi.org/10.7910/DVN/ADIFOV
|
|
Creator |
Hollenbach, Florian M
|
|
Publisher |
Harvard Dataverse
|
|
Description |
This data set contains necessary code to recreate the simulations presented in Betz, Cook, & Hollenbach: "Bias due to network misspecification under spatial dependence." The pre-specification of the network is one of the biggest hurdles for applied researchers in undertaking spatial analysis. In this letter, we demonstrate two results. First, we derive bounds for the bias in non-spatial models with omitted spatially-lagged predictors or outcomes. These bias expressions can be obtained without prior knowledge of the network, and are more informative than familiar omitted variable bias formulas. Second, we derive bounds for the bias in spatial econometric models with non-differential error in the specification of the weights matrix. Under these conditions, we demonstrate that an omitted spatial input is the limit condition of including a misspecificed spatial weights matrix. Simulated experiments further demonstrate that spatial models with a misspecified weights matrix weakly dominate non-spatial models. Our results imply that, where cross-sectional dependence is presumed, researchers should pursue spatial analysis even with limited information on network ties. |
|
Subject |
Social Sciences
measurement error omitted variables spatial dependence |
|
Contributor |
Ocean, Code
|
|