Record Details

Lower hybrid current drive in a tokamak for correlated passes through resonance

Harvard Dataverse (Africa Rice Center, Bioversity International, CCAFS, CIAT, IFPRI, IRRI and WorldFish)

View Archive Info
 
 
Field Value
 
Title Lower hybrid current drive in a tokamak for correlated passes through resonance
 
Identifier https://doi.org/10.7910/DVN/H9X9M1
 
Creator Peter J. Catto
 
Publisher Harvard Dataverse
 
Description Standard quasilinear descriptions are based on the constant magnetic field form of the quasilinear operator so improperly treat the trapped electron modifications associated with tokamak geometry. Moreover, successive poloidal transits of the Landau resonance during lower hybrid current drive in a tokamak are well correlated, and these geometrical details must be properly retained to account for the presence of trapped electrons that do not contribute to the driven current. The recently derived quasilinear operator in tokamak geometry accounts for these features and finds that the quasilinear diffusivity is proportional to a delta function with a transit or bounce averaged argument (rather than a local Landau resonance condition). The new quasilinear operator is combined with the Cordey (Nucl. Fusion, vol. 16, 1976, pp. 499–507) eigenfunctions to properly derive a rather simple and compact analytic expression for the trapped electron modifications to the driven lower hybrid current and the efficiency of the current drive.
 
Subject Physics
correlated passes through resonance
current drive
Lower hybrid
quasilinear
trapped electrons