Record Details

Identification of novel biomarkers for thyroid cancer using multi omics data analysis

Harvard Dataverse (Africa Rice Center, Bioversity International, CCAFS, CIAT, IFPRI, IRRI and WorldFish)

View Archive Info
 
 
Field Value
 
Title Identification of novel biomarkers for thyroid cancer using multi omics data analysis
 
Identifier https://doi.org/10.7910/DVN/K4F6DM
 
Creator Dhingra, Cheena
 
Publisher Harvard Dataverse
 
Description The biomarkers for thyroid cancer are still not known properly. For treating thyroid cancer these biomarkers can by be targeted specifically. Through this project, we identified and used bioinformatics tools to find biomarkers associated with thyroid cancer. Gene Expression Omnibus database (GEO) was used to find dataset related with thyroid cancer. Their expression profiles were downloaded. Four dataset GSE3467, GSE3678, GSE33630, and GSE53157 were identified from GEO database. The dataset GSE3467 contains nine thyroid tumor samples and nine normal thyroid tissue samples. The GSE3678 contains seven thyroid tumor samples and seven normal thyroid tissue samples. The GSE53157 contains twenty four thyroid tumor samples and three normal thyroid samples. The GSE33630 contains sixty thyroid tumor samples and forty five normal thyroid samples. These four datasets were analyzed individually and were integrated at the end to find the common genes among these four datasets. The microarray analysis of the datasets were performed using excel. T.Test analysis were performed for all the four datasets individually on a separate excel sheet. The data was normalized by converting normal value into log scale. Differential expression analysis of all the four datasets were done to identify differentially expresses genes (DEGs). Only upregulated genes were taken into account. Principal component analysis (PCA) of all the four dataset were performed using the raw data. The PCA analysis were performed using T-BioInfo server and the scatterplots were prepared using excel. RStudio was used to match the gene symbols with the corresponding probe ids using left join function. Inner join function in R was used to find integrated genes between the four datasets. Heatmaps of all the four datasets were performed using RStudio. To find number of intersection of Differentially expressed genes, an upset plot was prepared using RStudio. 74 genes with their corresponding probe ids were found to be common among all the four datasets. These genes are common to at least two datasets. These 74 common genes were analyzed using Database for Annotation, Visualization, and Integrated Discovery (DAVID), to study their Gene onotology (GO) functional annotations and pathways. According to the GO functional annotations result, most of the integrated upregulated genes were involved in protein binding, plasma membrane and integral component of membrane. Most common pathway include Extracellular matrix organization, Neutrophil degranulation, TGF-beta signaling pathway and Epithelial to mesenchymal transition in colorectal cancer. These 74 genes were introduced to STRING database to find protein-protein interactions between the genes. Interactions between the nodes were downloaded from STRING database and introduced to Sytoscape. Sytoscape analysis explained that only 19 genes showed protein-protein interactions between each other. Disease free survival analysis of the 13 genes that were common to three datasets were done using GEPIA. Boxplots of these 13 genes were also prepared using GEPIA. This showed that these differentially expressed genes showed different expression in normal thyroid tissue and thyroid tumor samples. Hence these 13 genes common to 3 datasets can be used as potential biomarkers for thyroid cancer. Among these 13 genes, four genes are implicated in cancer/cell proliferation can be probable target for treatment options.
 
Subject Computer and Information Science
Medicine, Health and Life Sciences
 
Contributor Dhingra, Cheena