Design of inertial fusion implosions reaching the burning plasma regime
Harvard Dataverse (Africa Rice Center, Bioversity International, CCAFS, CIAT, IFPRI, IRRI and WorldFish)
View Archive InfoField | Value | |
Title |
Design of inertial fusion implosions reaching the burning plasma regime
|
|
Identifier |
https://doi.org/10.7910/DVN/MPKQ9M
|
|
Creator |
A. L. Kritcher; C. V. Young; H. F. Robey; C. R. Weber, A. B. Zylstra, O. A. Hurricane, D. A. Callahan, J. E. Ralph, J. S. Ross, K. L. Baker, D. T. Casey, D. S. Clark, T. D¨oeppner, L. Divol, M. Hohenberger, S. Le Pape, A. E. Pak, P. K. Patel, R. Tommasini, S. J. Ali, P. A. Amendt, J. Atherton, B. Bachmann, D. Bailey, L. R. Benedetti, L. Berzak Hopkins, R. Betti, S. D. Bhandarkar, R. M. Bionta, N. W. Birge, E. J. Bond, D. K. Bradley, T. Braun, T. M. Briggs, M. W. Bruhn, P. M. Celliers, B. Chang, T. Chapman, H. Chen, C. Choate, A. R. Christopherson, J. W. Crippen, E. L. Dewald, T. R. Dittrich, M. J. Edwards, W. A. Farmer, J. E. Field, D. Fittinghoff, J. Frenje, J. Gaffney, M. Gatu Johnson, S. H. Glenzer, G. P. Grim, S. Haan, K. D. Hahn, G. N. Hall, B. A. Hammel, J. Harte, E. Hartouni, J. E. Heebner, V. J. Hernandez, H. Herrmann, M. C. Herrmann, D. E. Hinkel, D. D. Ho, J. P. Holder, W. W. Hsing, H. Huang, K. D. Humbird, N. Izumi, J. Jeet, O. Jones, G. D. Kerbel, S. M. Kerr, S. F. Khan, J. Kilkenny, Y. Kim, H. Geppert Kleinrath, V. Geppert Kleinrath, J. L. Kline, C. Kong, J. M. Koning, J. J. Kroll, O. L. Landen, S. Langer, D. Larson, N. C. Lemos, J. D. Lindl, T. Ma, B. J. MacGowan, A. J. Mackinnon, S. A. MacLaren, A. G. MacPhee, M. M. Marinak, D. A. Mariscal, E. V. Marley, L. Masse, K. Meaney, N. B. Meezan, P. A. Michel, M. A. Millot, J. L. Milovich, J. D. Moody, A. S. Moore, J.W. Morton, K. Newman, J.-M. G. Di Nicola, A. Nikroo, R. Nora, M. V. Patel, L. J. Pelz, J. L. Peterson, Y. Ping, B. B. Pollock, M. Ratledge, N. G. Rice, H. Rinderknecht, M. Rosen, M. S. Rubery, J. D. Salmonson, J. Sater, S. Schiaffino, D. J. Schlossberg, M. B. Schneider, C. R. Schroeder, H. A. Scott, S. M. Sepke, K. Sequoia, M. W. Sherlock, S. Shin, V. A. Smalyuk, B. K. Spears, P. T. Springer, M. Stadermann, S. Stoupin, D. J. Strozzi, L. J. Suter, C. A. Thomas, R. P. J. Town, E. R. Tubman, P. L. Volegov, K. Widmann, C. Wild, C. H. Wilde, B. M. Van Wonterghem, D. T. Woods, B. N. Woodworth, M. Yamaguchi, S. T. Yang, G. B. Zimmerman
|
|
Publisher |
Harvard Dataverse
|
|
Description |
One of the last remaining milestones in fusion research before reaching ignition is creating a burning plasma state, where alpha particles from deuterium-tritium (DT) fusion reactions redeposit their energy as the dominant source of heating in the plasma. The indirect-drive inertial confinement fusion approach at the National Ignition Facility (NIF) uses a laser-generated radiation cavity (hohlraum) to spherically implode DT fuel to high temperatures and densities in a central ”hot spot”. Here, we deliver more energy to the hot spot than ever before, while maintaining the extreme pressures required for inertial confinement, by increasing the size of the implosion compared to previous experiments. We develop more efficient hohlraums, to drive these larger implosions within NIF’s current laser energy and power capability and control symmetry by moving energy between laser beams and by changing the shape of the hohlraum. These designs resulted in record fusion powers of 1.5 petawatts, greater than the input power of the laser, and 170 kJ of fusion energy. Radiation hydrodynamics simulations show alpha particle heating as the dominant term in the hot spot energy balance, e.g. a burning plasma state. This work is expected to motivate future studies of burning plasmas and improve predictive capability by providing a benchmark for modeling used to understand the proximity to ignition.
|
|
Subject |
Physics
burning plasma indirect-drive inertial confinement fusion National Ignition Facility radiation hydrodynamic simulations |
|
Date |
2022-06-10
|
|