Laser-direct-drive fusion target design with a high-Z gradient-density pusher shell
Harvard Dataverse (Africa Rice Center, Bioversity International, CCAFS, CIAT, IFPRI, IRRI and WorldFish)
View Archive InfoField | Value | |
Title |
Laser-direct-drive fusion target design with a high-Z gradient-density pusher shell
|
|
Identifier |
https://doi.org/10.7910/DVN/PMJXDR
|
|
Creator |
S. X. Hu, L. Ceurvorst, J. L. Peebles, A. Mao, P. Li, Y. Lu, A. Shvydky, V. N. Goncharov, R. Epstein, K. A. Nichols, R. M. N. Goshadze, M. Ghosh, J. Hinz, V. V. Karasiev, S. Zhang, N. R. Shaffer, D. I. Mihaylov, J. Cappelletti, D. R. Harding, C. K. Li, E. M. Campbell, R. C. Shah, T. J. B. Collins, S. P. Regan, C. Deeney
|
|
Publisher |
Harvard Dataverse
|
|
Description |
Laser-direct-drive fusion target designs with solid deuterium-tritium (DT) fuel, a high-Z gradient-density pusher shell (GDPS), and a Au-coated foam layer have been investigated through both 1D and 2D radiationhydrodynamic simulations. Compared with conventional low-Z ablators and DT-push-on-DT targets, these GDPS targets possess certain advantages of being instability-resistant implosions that can be high adiabat (α 8) and low hot-spot and pusher-shell convergence (CRhs ≈ 22 and CRPS ≈ 17), and have a low implosion velocity (vimp < 3 × 107 cm/s). Using symmetric drive with laser energies of 1.9 to 2.5 MJ, 1D LILAC simulations of these GDPS implosions can result in neutron yields corresponding to 50−MJ energy, even with reduced laser absorption due to the cross-beam energy transfer (CBET) effect. Two-dimensional DRACO simulations show that these GDPS targets can still ignite and deliver neutron yields from 4 to ∼10 MJ even if CBET is present, while traditional DT-push-on-DT targets normally fail due to the CBET-induced reduction of ablation pressure. If CBET is mitigated, these GDPS targets are expected to produce neutron yields of >20 MJ at a driven laser energy of ∼2 MJ. The key factors behind the robust ignition and moderate energy gain of such GDPS implosions are as follows: (1) The high initial density of the high-Z pusher shell can be placed at a very high adiabat while the DT fuel is maintained at a relatively low-entropy state; therefore, such implosions can still provide enough compression ρR >1 g/cm2 for sufficient confinement; (2) the high-Z layer significantly reduces heat-conduction loss from the hot spot since thermal conductivity scales as ∼1/Z; and (3) possible radiation trapping may offer an additional advantage for reducing energy loss from such high-Z targets.
|
|
Subject |
Physics
direct drive high-Z gradient-density pusher implosion dynamics laser driven implosion target design & fabrication |
|
Date |
2024-01-02
|
|