Description |
Moisture Index (MI) for the state of Utah is calculated from a spatial raster of annual actual (ETact) and potential (PET) evapotranspiration data from 2000 to 2013 derived from the MODIS instrumentation (Mu, Zhao, & Running, 2011; Mu, Zhao, & Running, 2013; Numerical Terradynamic Simulation Group, 2013). Moisture Index (MI) was created to compare the suitability of settlement locations throughout Utah to explain initial Euro-American settlement of the region. MI is one of two proxies created specifically for Utah for comparison of environmental productivity throughout the state.
Moisture index (MI) was originally used by Ramankutty et al. (2002) on a global scale to understand probability of cultivation based on a series of environmental factors. The Ramankutty et al. (2002) methods were used to build a regional proxy of agricultural suitability for the state of Utah. Adapting the methods in Ramankutty et al. (2002), we were able to create a higher resolution dataset of MI specific to the state of Utah. Unlike S, MI only accounts for evapotranspiration rates.The Moisture Index is calculated as:
MI = ETact / PET
Where ETact is the actual evapotranspiration and PET is the potential evapotranspiration. This calculation results in a zero to one index representing global variation in moisture. MI is calculated for the study area (Utah) using a raster of annual actual (ETact) and potential (PET) evapotranspiration data from 2000 to 2013 derived from the MODIS instrumentation (Mu, Zhao, & Running, 2011; Mu, Zhao, & Running, 2013; Numerical Terradynamic Simulation Group, 2013). Using the ArcMap 10.3.1 Raster Calculator (Spatial Analyst), a raster dataset is created at a resolution of 2.6 kilometer square, which contain values representative of the average Moisture Index for Utah over a fourteen year period (ESRI, 2015). The data were collected remotely by satellite (MODIS) and represents reflective surfaces (urban areas, lakes, and the Utah Salt Flats) as null values in the dataset. Areas of null values that were not bodies of water are interpolated using Inverse Distance Weighting (3d Analyst) in ArcMap 10.3.1 (ESRI, 2015).
Download the moisture index (MI) data below. If you have any questions or concerns, please contact me at PYaworsky89@gmail.com.
Citations
ESRI. (2015). ArcGIS Desktop: Release (Version 10.3.1). Redlands, CA: Environmental Systems Research Institute.
Mu, Q., Zhao, M., & Running, S. W. (2013). MODIS Global Terrestrial Evapotranspiration (ET) Product (NASA MOD16A2/A3). Algorithm Theoretical Basis Document, Collection, 5. Retrieved from http://www.ntsg.umt.edu/sites/ntsg.umt.edu/files/MOD16_ATBD.pdf
Mu, Q., Zhao, M., & Running, S. W. (2011). Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sensing of Environment, 115(8), 1781–1800.
Numerical Terradynamic Simulation Group. (2013, July 29). MODIS Global Evapotranspiration Project (MOD16). University of Montana.
Ramankutty, N., Foley, J. A., Norman, J., & Mcsweeney, K. (2002). The global distribution of cultivable lands: current patterns and sensitivity to possible climate change. Global Ecology and Biogeography, 11(5), 377–392. http://doi.org/10.1046/j.1466-822x.2002.00294.x
|
Source |
ESRI 2016. ArcGIS Desktop: Release 10.3.1. Redlands, CA: Environmental Systems Research Institute.
Mu, Q., Zhao, M., & Running, S. W. (2013). MODIS Global Terrestrial Evapotranspiration (ET) Product (NASA MOD16A2/A3). Algorithm Theoretical Basis Document, Collection, 5. Retrieved from http://www.ntsg.umt.edu/sites/ntsg.umt.edu/files/MOD16_ATBD.pdf
Mu, Q., Zhao, M., & Running, S. W. (2011). Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sensing of Environment, 115(8), 1781–1800.
Numerical Terradynamic Simulation Group. (2013, July 29). MODIS Global Evapotranspiration Project (MOD16). University of Montana.
Ramankutty, N., Foley, J. A., Norman, J., & Mcsweeney, K. (2002). The global distribution of cultivable lands: current patterns and sensitivity to possible climate change. Global Ecology and Biogeography, 11(5), 377–392. http://doi.org/10.1046/j.1466-822x.2002.00294.x
|