KRISHI
ICAR RESEARCH DATA REPOSITORY FOR KNOWLEDGE MANAGEMENT
(An Institutional Publication and Data Inventory Repository)
"Not Available": Please do not remove the default option "Not Available" for the fields where metadata information is not available
"1001-01-01": Date not available or not applicable for filling metadata infromation
"1001-01-01": Date not available or not applicable for filling metadata infromation
Please use this identifier to cite or link to this item:
http://krishi.icar.gov.in/jspui/handle/123456789/20033
Title: | A combination of linalool, vitamin c, and copper synergistically triggers reactive oxygen species and DNA damage and inhibits Salmonella entericasubsp. enterica Serovar Typhi and Vibrio fluvialis |
Other Titles: | Not Available |
Authors: | Ghosh, T., Srivastava, S.K., Gaurav, A., Kumar, A., Kumar, P., Yadav, A.S., Pathania, R. and Navani, N.K. |
ICAR Data Use Licennce: | http://krishi.icar.gov.in/PDF/ICAR_Data_Use_Licence.pdf |
Author's Affiliated institute: | ICAR::Central Avian Research Institute |
Published/ Complete Date: | 2019-02-15 |
Project Code: | Not Available |
Keywords: | ROS; Salmonella enterica subsp. enterica serovar Typhi; Vibrio fluvialis ; antimicrobial agents; copper; essential oil; foodborne pathogens; oxidative stress; vitamin C |
Publisher: | Not Available |
Citation: | Not Available |
Series/Report no.: | Not Available; |
Abstract/Description: | Inappropriate and disproportionate use of antibiotics is contributing immensely to the development of antibiotic resistance in bacterial species associated with food contamination. The use of natural products in combination can be a potent alternative hurdle strategy to inactivate foodborne pathogens. Here, we explored the pro-oxidant properties of essential oil linalool and vitamin C in combination with copper (LVC) in combating the foodborne pathogens Vibrio fluvialis and Salmonella enterica subsp. enterica serovar Typhi using a three-dimensional (3D) checkerboard microdilution assay. Antibacterial activity in terms of the MIC revealed that the triple combination exerted a synergistic effect compared to the effects of the individual constituents. The bactericidal effect of the triple combination was confirmed by a live/dead staining assay. Reactive oxygen species (ROS) measurements with the terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling assay and scanning electron microscopy imaging strongly suggested that the increase in ROS production is the underlying mechanism of the enhanced antibacterial potency of the LVC combination (linalool [1.298 mM], vitamin C [8 mM], copper [16.3 μM]). In addition, the hypersensitivity of oxidative stress regulator mutants (oxyR, katG, ahpC, and sodA mutants) toward LVC corroborated the involvement of ROS in cell death. Live/dead staining and changes in cellular morphology revealed that oxidative stress did not transform the cells into the viable but nonculturable (VBNC) state; rather, killing was associated with intracellular and extracellular oxidative burst. Furthermore, the LVC combination did not display toxicity to human cells, while it effectively reduced the pathogen levels in acidic fruit juices by 3 to 4 log CFU/ml without adversely altering the organoleptic properties. This study opens a new outlook for combinatorial antimicrobial therapy.IMPORTANCE There is a need to develop effective antibacterial therapies for mitigating bacterial pathogens in food systems. We used a 3D checkerboard assay to ascertain a safe synergistic combination of food-grade components: vitamin C, copper, and the essential oil linalool. Individually, these constituents have to be added in large amounts to exert their antibacterial effect, which leads to unwanted organoleptic properties. The triple combination could exceptionally inhibit foodborne Gram-negative pathogens like Vibrio fluvialis and Salmonella enterica subsp. enterica serovar Typhi at low concentrations (linalool, 1.298 mM; vitamin C, 8 mM; copper, 16.3 μM) and displayed potent microbial inhibition in acidic beverages. We found increased susceptibility in deletion mutants of oxidative stress regulators (oxyR, katG, ahpC, and sodA mutants) due to ROS generation by Fenton's chemistry. The results of this study show that it may be possible to use plant-based antimicrobials in synergistic combinations to control microbial contaminants. |
Description: | Not Available |
ISSN: | Not Available |
Type(s) of content: | Research Paper |
Sponsors: | Not Available |
Language: | English |
Name of Journal: | Applied and Environmental Microbiology |
NAAS Rating: | 10.02 |
Volume No.: | 85 (7) |
Page Number: | 10.1128/AEM.02487-18 |
Name of the Division/Regional Station: | Not Available |
Source, DOI or any other URL: | https://www.ncbi.nlm.nih.gov/pubmed/30552187 |
URI: | http://krishi.icar.gov.in/jspui/handle/123456789/20033 |
Appears in Collections: | AS-CARI-Publication |
Files in This Item:
There are no files associated with this item.
Items in KRISHI are protected by copyright, with all rights reserved, unless otherwise indicated.