KRISHI
ICAR RESEARCH DATA REPOSITORY FOR KNOWLEDGE MANAGEMENT
(An Institutional Publication and Data Inventory Repository)
"Not Available": Please do not remove the default option "Not Available" for the fields where metadata information is not available
"1001-01-01": Date not available or not applicable for filling metadata infromation
"1001-01-01": Date not available or not applicable for filling metadata infromation
Please use this identifier to cite or link to this item:
http://krishi.icar.gov.in/jspui/handle/123456789/23486
Title: | Virtual screening and in vitro assay of potential drug like inhibitors from spices against glutathione-S-transferase of filarial nematodes |
Other Titles: | Not Available |
Authors: | Shamina A., Rosana O.B., Riju A., Reena N. |
ICAR Data Use Licennce: | http://krishi.icar.gov.in/PDF/ICAR_Data_Use_Licence.pdf |
Author's Affiliated institute: | ICAR-IIHR |
Published/ Complete Date: | 2011-04-27 |
Project Code: | Not Available |
Keywords: | Brugia malayi . Dirofilaria immitis . Docking . Glutathione S-transferase(s) . Phytochemicals |
Publisher: | Springer-Verlag |
Citation: | Not Available |
Series/Report no.: | Not Available; |
Abstract/Description: | Glutathione-S-transferase(s) (GST) enzyme from Brugia malayi has been exploited as a target in lymphatic filariasis therapeutics. An active GST is a homodimer of a 208 residue long monomer consisting of two domains, a smaller α/β domain and a larger α domain. The components of the glutathione (GSH) system, mainly GST enzymes, are critical antioxidant and detoxification system responsible for the long-term existence of filarial worms in mammalian host; hence they are major chemotherapeutic targets in filarial species. In the present study, 58 phytochemicals from 10 plants, predicted and reported to have potential nematicidal activity and ADMET satisfaction, have been docked to GST enzyme of B. malayi to assess their binding affinity and consequently their inhibitory activity. A comparative study has been made with commonly employed chemotherapeutic GST inhibitors such as cibacron-blue, butylated hydroxyanisole, hexylglutathione and ethacrynic acid. In vitro effects of potential drug like compound from in silico results have been done for validation of docking studies. In vitro assay revealed efficacy in GST inhibition in the following compounds: linalool (97.50%), alpha-pinene (90.00%), strychnine (87.49%), vanillin (84.99%), piperine (79.99%), isoeugenol (62.49%), curcumin (57.49%), beta-caryophyllene (39.50%), cinnamic acid (27.49%), capsaicin (19.99%), citronellol (19.99%) and geraniol (17.49%). An online database (www.spicebioinfo.res.in/gstleadbase) has been developed, which will serve as a useful repository of information on GST inhibitors for future development of drugs against filarial nematodes. These findings thus suggest that the above phytochemicals could be potentially developed as lead molecules for targeting GST of lymphatic filarial parasites. |
Description: | Not Available |
ISSN: | Not Available |
Type(s) of content: | Research Paper |
Sponsors: | Not Available |
Language: | English |
Name of Journal: | Journal of Molecular Modeling |
NAAS Rating: | 7.35 |
Volume No.: | 18(1) |
Page Number: | 151-163 |
Name of the Division/Regional Station: | Division of Plant Physiology & Biochemistry |
Source, DOI or any other URL: | https://dx.doi.org/10.1007/s00894-011-1035-2 |
URI: | http://krishi.icar.gov.in/jspui/handle/123456789/23486 |
Appears in Collections: | HS-IIHR-Publication |
Files in This Item:
There are no files associated with this item.
Items in KRISHI are protected by copyright, with all rights reserved, unless otherwise indicated.